Mark Scheme 4727 June 2007

_			
1	(i) $zz^* = re^{i\theta} . re^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG
	(ii) Circle	B1	For stating circle
	Centre $0 (+0i) OR (0, 0) OR O$, radius 3	B1 2	For stating correct centre and radius
2	EITHER: $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
_	8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
	\Rightarrow (0t) + (-3) = 7 \Rightarrow contradiction	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1 5	For conclusion from correct working
	$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
	$\Rightarrow l$ is parallel to Π	A1	For correct conclusion
	$(3, 1, -2)$ into Π	M1	For substituting point into plane equation
	$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1	For conclusion from correct working
Ol	R:Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x - 7y + 10z = 7$		
	eg $y-2z=3$, $2y-2=4z+8$	M1 A1	For eliminating one variable
		M1	For eliminating another variable
	eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
	l is parallel to Π , no intersection	B1	For conclusion from correct working
		5	
3	Aux. equation $m^2 - 6m + 8 = 0$	M1	For auxiliary equation seen
	m = 2, 4	A1	For correct roots
	$CF (y =) Ae^{2x} + Be^{4x}$	A1√	For correct CF. f.t. from their m
	$PI(y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
	$9C - 18C + 8C = 1 \Rightarrow C = -1$	A1	For correct value of <i>C</i>
	GS $y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI
		6	

4 (i) $q(st) = qp = s$	B1		For obtaining s
(qs)t = tt = s	B1	2	For obtaining s
(ii) METHOD 1			
Closed: see table	B1		For stating closure with reason
Identity = r	B1		For stating identity <i>r</i>
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
$s^{-1} = p, \ t^{-1} = q$	A1	4	For stating inverses <i>OR</i> For giving sufficient explanation to justify each element has an inverse eg <i>r</i> occurs once in each row and/or column
METHOD 2			
Identity = r	B1		For stating identity <i>r</i>
	M1		For attempting to establish a generator $\neq r$
eg $p^2 = t$, $p^3 = q$, $p^4 = s$	A1		For showing powers of $p(OR q, s \text{ or } t)$ are different elements of the set
$\Rightarrow p^5 = r$, so p is a generator	A1		For concluding $p^5(ORq^5, s^5 \text{ or } t^5) = r$
(iii) e, d, d^2, d^3, d^4	B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
	8		-

5 (i) $(\cos 6\theta =) \text{Re}(c + i s)^6$	M1	For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient needed
$(\cos 6\theta =) c^6 - 15c^4s^2 + 15c^2s^4 - s^6$	A1	For correct expansion
$(\cos 6\theta =)$ $c^{6} - 15c^{4}(1 - c^{2}) + 15c^{2}(1 - c^{2})^{2} - (1 - c^{2})^{3}$	M1	For using $s^2 = 1 - c^2$
$(\cos 6\theta =) 32c^6 - 48c^4 + 18c^2 - 1$	A1 4	For correct result AG
(ii) $64x^6 - 96x^4 + 36x^2 - 3 = 0 \Rightarrow \cos 6\theta = \frac{1}{2}$	M1	For obtaining a numerical value of cos 6θ
$\Rightarrow (\theta =) \frac{1}{18} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi \text{ etc.}$	A1	For any correct solution of $\cos 6\theta = \frac{1}{2}$
$\cos 6\theta = \frac{1}{2}$ has multiple roots	M1	For stating or implying at least 2 values of θ
largest x requires smallest θ	A1 4	For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root
\Rightarrow largest positive root is $\cos \frac{1}{18}\pi$		from a list of 3 positive roots OR from general solution OR from consideration of the cosine function
	8	

	1	
$6 \mathbf{(i)} \mathbf{n} = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that n is perpendicular to l_1 and l_2
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	For finding vector product of direction vectors
$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any <i>k</i>)
$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of l_1 into $\mathbf{r.n}$
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	For obtaining correct p. AEF in this form
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same n and substituting a point of l_2
$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ 2	For obtaining correct <i>p</i> . AEF in this form f.t. on incorrect n
(iii) $d = \frac{\left -5 + 3 \right }{\sqrt{5}} OR d = \frac{\left [2, -3, 2] \cdot [-1, 0, 2] \right }{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
OR d from (5, 1, 1) to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
OR d from $(3, 4, -1)$ to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		<i>OR</i> For finding intersection of \mathbf{n}_1 and Π_2 or \mathbf{n}_2 and
$OR [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \Rightarrow t = -\frac{2}{5}$		Π_1
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427\dots$	A1√ 2	For correct distance AEF f.t. on incorrect n
(iv) d is the shortest OR perpendicular distance between l_1 and l_2	B1 1	For correct statement
. 2	10	
$(e^{i\phi} + e^{-i\phi})$		
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$		
$(\mathbf{ii}) \ z = \mathrm{e}^{\frac{2}{7}k\pi\mathrm{i}}$	B1	For general form <i>OR</i> any one non-real root
for $k = 0, 1, 2, 3, 4, 5, 6 OR 0, \pm 1, \pm 2, \pm 3$	B1	For other roots specified
		$(k=0 \text{ may be seen in any form, eg } 1, e^0, e^{2\pi i})$
†im		For answers in form $\cos \theta + i \sin \theta$ allow maximum
		B1 B0
1re		
	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis,
2_; 4_;		and other points in correct quadrants
(iii) $(z^7 - 1 =) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$	M1	For using linear factors from (ii), seen or implied
$(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-2}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-6}{7}\pi i})$		
$= (z - e^{\frac{2}{7}\pi i})(z - e^{\frac{-2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$ $(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times$	M1	For identifying at least one pair of complex conjugate factors
$\times (z-1)$	B1	For linear factor seen
$= (z^2 - (2\cos\frac{2}{7}\pi)z + 1) \times$	A1	For any one quadratic factor seen
$(z^2 - (2\cos\frac{4}{7}\pi)z + 1) \times (z^2 - (2\cos\frac{6}{7}\pi)z + 1) \times$	A1 5	For the other 2 quadratic factors and expression written as product of 4 factors
$\times (z-1)$		The state of the s
	10	

	1	T
8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF
$=e^{-\ln\cos x}$	M1	For integrating to ln form
$= (\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y(\cos x)^{-1} \right) = \cos^2 x$	B1√	For $\frac{d}{dx}(y. \text{ their IF}) = \cos^3 x. \text{ their IF}$
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula <i>OR</i> parts for $\int \cos^2 x dx$
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x \ (+c)$	A1	For correct integration both sides AEF
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF
(ii) $2 = (\frac{1}{2}\pi + c) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for c
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF
(2 , 2 ,	10	
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
	D1	For considering 3 distinct elements,
$\left(3^{p} \times 3^{q}\right) \times 3^{r} = \left(3^{p+q}\right) \times 3^{r} = 3^{p+q+r}$	M1	seen bracketed 2+1 or 1+2
$=3^p \times (3^{q+r}) = 3^p \times (3^q \times 3^r) \Rightarrow \text{associativity}$	A1	For correct justification of associativity
Identity is 3 ⁰	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow \text{commutativity}$	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} \left(= 3^{2(n+m)} \right)$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
-n ∉ subset	A1 2	For justification of not being a subgroup
		3^{-n} must be seen here or in (i)
(c) EITHER: eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow \text{ not a subgroup}$	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: \ 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2} \text{ eg } 1^2 + 2^2 = 5 \implies \text{not a subgroup}$	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and
	12	statement that it is not a subgroup