Mark Scheme 4727 June 2007

1 (i) $z z^{*}=r \mathrm{e}^{\mathrm{i} \theta} \cdot \mathrm{r} \mathrm{e}^{-\mathrm{i} \theta}=\mathrm{r}^{2}=\|z\|^{2}$	B1	For verifying result AG
(ii) Circle Centre $0(+0 \mathrm{i}) O R(0,0) O R O$, radius 3	$$	For stating circle For stating correct centre and radius
2 EITHER: $(\mathbf{r}=)[3+t, 1+4 t,-2+2 t]$ $8(3+t)-7(1+4 t)+10(-2+2 t)=7$ $\Rightarrow(0 t)+(-3)=7 \Rightarrow$ contradiction l is parallel to Π, no intersection OR: $[1,4,2] .[8,-7,10]=0$ $\Rightarrow l$ is parallel to Π $(3,1,-2)$ into Π $\Rightarrow 24-7-20 \neq 7$ l is parallel to Π, no intersection	M1 M1 A1 A1 B1 5 A1 M1 A1 B1	For parametric form of l seen or implied For substituting into plane equation For obtaining a contradiction For conclusion from correct working For finding scalar product of direction vectors For correct conclusion For substituting point into plane equation For obtaining a contradiction For conclusion from correct working
OR:Solve $\frac{x-3}{1}=\frac{y-1}{4}=\frac{z+2}{2}$ and $8 x-7 y+10 z=7$ eg $y-2 z=3,2 y-2=4 z+8$ eg $4 z+4=4 z+8$ l is parallel to Π, no intersection	M1 A1 M1 A1 B1	For eliminating one variable For eliminating another variable For obtaining a contradiction For conclusion from correct working
$\begin{aligned} & 3 \text { Aux. equation } m^{2}-6 m+8(=0) \\ & m=2,4 \\ & \text { CF }(y=) A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x} \\ & \text { PI }(y=) C \mathrm{e}^{3 x} \\ & 9 C-18 C+8 C=1 \Rightarrow C=-1 \\ & \text { GS } y=A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x}-\mathrm{e}^{3 x} \end{aligned}$	M1 A1 A1 $\sqrt{ }$ M1 A1 B1 $\sqrt{ } 6$	For auxiliary equation seen For correct roots For correct CF. f.t. from their m For stating and substituting PI of correct form For correct value of C For GS. f.t. from their CF + PI with 2 arbitrary constants in CF and none in PI

$\begin{aligned} \left.4 \quad \text { (i) } \begin{array}{rl} q(s t) & =q p=s \\ (q s) t & =t t=s \end{array}\right) . \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	For obtaining s For obtaining s
(ii) METHOD 1 Closed: see table Identity $=r$ Inverses: $p^{-1}=s, q^{-1}=t,\left(r^{-1}=r\right)$, $s^{-1}=p, t^{-1}=q$	B1 B1 M1 A1 4	For stating closure with reason For stating identity r For checking for inverses For stating inverses $O R$ For giving sufficient explanation to justify each element has an inverse eg r occurs once in each row and/or column
METHOD 2 Identity $=r$ eg $p^{2}=t, p^{3}=q, p^{4}=s$ $\Rightarrow p^{5}=r$, so p is a generator	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For stating identity r For attempting to establish a generator $\neq r$ For showing powers of $p(O R q$, s or t) are different elements of the set For concluding $p^{5}\left(O R q^{5}, s^{5}\right.$ or $\left.t^{5}\right)=r$
(iii) $e, d, d^{2}, d^{3}, d^{4}$	B2 2 8	For stating all elements AEF eg $d^{-1}, d^{-2}, d d$

$5 \text { (i) } \begin{aligned} &(\cos 6 \theta=) \operatorname{Re}(c+\mathrm{i} s)^{6} \\ &(\cos 6 \theta=) c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6} \\ &(\cos 6 \theta=) \\ & c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3} \\ &(\cos 6 \theta=) 32 c^{6}-48 c^{4}+18 c^{2}-1 \end{aligned}$	M1 A1 M1 A1 4	For expanding (real part of) $(c+i s)^{6}$ at least 4 terms and 1 evaluated binomial coefficient needed For correct expansion For using $s^{2}=1-c^{2}$ For correct result AG
(ii) $\begin{aligned} & 64 x^{6}-96 x^{4}+36 x^{2}-3=0 \Rightarrow \cos 6 \theta=\frac{1}{2} \\ & \Rightarrow(\theta=) \frac{1}{18} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi \text { etc. } \\ & \cos 6 \theta=\frac{1}{2} \text { has multiple roots } \\ & \text { largest } x \text { requires smallest } \theta \\ & \Rightarrow \text { largest positive root is } \cos \frac{1}{18} \pi \end{aligned}$	M1 A1 M1 A1 4	For obtaining a numerical value of $\cos 6 \theta$ For any correct solution of $\cos 6 \theta=\frac{1}{2}$ For stating or implying at least 2 values of θ For identifying $\cos \frac{1}{18} \pi$ AEF as the largest positive root from a list of 3 positive roots $O R$ from general solution $O R$ from consideration of the cosine function

$6 \text { (i) } \begin{aligned} & \mathbf{n} \\ & =l_{1} \times l_{2} \\ & \mathbf{n} \\ & =[2,-1,1] \times[4,3,2] \\ & \mathbf{n} \end{aligned}=k[-1,0,2] .$	B1 M1* A1 M1 (*dep) A1 5	For stating or implying in (i) or (ii) that \mathbf{n} is perpendicular to l_{1} and l_{2} For finding vector product of direction vectors For correct vector (any k) For substituting a point of l_{1} into $\mathbf{r} . \boldsymbol{n}$ For obtaining correct p. AEF in this form
$\begin{aligned} & \text { (ii) }[5,1,1] \cdot k[-1,0,2]=-3 k \\ & \text { r. }[-1,0,2]=-3 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \sqrt{ } 2 \end{aligned}$	For using same \mathbf{n} and substituting a point of l_{2} For obtaining correct p. AEF in this form f.t. on incorrect \mathbf{n}
$\begin{aligned} & \text { (iii) } d=\frac{\|-5+3\|}{\sqrt{5}} \text { OR } d=\frac{\|[2,-3,2] \cdot[-1,0,2]\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(5,1,1) \text { to } \Pi_{1}=\frac{\|5(-1)+1(0)+1(2)+5\|}{\sqrt{5}} \\ & \text { OR } d \text { from }(3,4,-1) \text { to } \Pi_{2}=\frac{\|3(-1)+4(0)-1(2)+3\|}{\sqrt{5}} \\ & \text { OR }[3-t, 4,-1+2 t] \cdot[-1,0,2]=-3 \Rightarrow t=\frac{2}{5} \\ & \text { OR }[5-t, 1,1+2 t] \cdot[-1,0,2]=-5 \Rightarrow t=-\frac{2}{5} \\ & \quad d=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}=0.894427 \ldots \end{aligned}$	M1 $\mathrm{A} 1 \sqrt{ } 2$	For using a distance formula from their equations Allow omission of \| OR For finding intersection of \mathbf{n}_{1} and Π_{2} or \mathbf{n}_{2} and Π_{1} For correct distance AEF f.t. on incorrect \mathbf{n}
(iv) d is the shortest $O R$ perpendicular distance between l_{1} and l_{2}	B1 1 10	For correct statement
$7 \text { (i) } \begin{aligned} \left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) & \equiv z^{2}-(2) z \frac{\left(\mathrm{e}^{\mathrm{i} \phi}+\mathrm{e}^{-\mathrm{i} \phi}\right)}{(2)}+1 \\ & \equiv z^{2}-(2 \cos \phi) z+1 \end{aligned}$	B1 1	For correct justification AG
(ii) $z=\mathrm{e}^{\frac{2}{7} k \pi \mathrm{i}}$ for $k=0,1,2,3,4,5,6$ OR $0, \pm 1, \pm 2, \pm 3$	B1 B1 B1 B1 4	For general form $O R$ any one non-real root For other roots specified ($k=0$ may be seen in any form, eg $1, \mathrm{e}^{0}$, $\mathrm{e}^{2 \pi \mathrm{i}}$) For answers in form $\cos \theta+\mathrm{i} \sin \theta$ allow maximum B1 B0 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+{ }^{\text {ve }}$ real axis, and other points in correct quadrants
$\begin{aligned} & \text { (iii) }\left(z^{7}-1=\right)(z-1)\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right) \\ & \quad \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \\ & =\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right) \times\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \times \\ & \quad \times(z-1) \\ & =\left(z^{2}-\left(2 \cos \frac{2}{7} \pi\right) z+1\right) \times \\ & \quad\left(z^{2}-\left(2 \cos \frac{4}{7} \pi\right) z+1\right) \times\left(z^{2}-\left(2 \cos \frac{6}{7} \pi\right) z+1\right) \times \\ & \times(z-1) \end{aligned}$	M1 M1 B1 A1 A1 5	For using linear factors from (ii), seen or implied For identifying at least one pair of complex conjugate factors For linear factor seen For any one quadratic factor seen For the other 2 quadratic factors and expression written as product of 4 factors

8 (i) Integrating factor $\mathrm{e}^{\int \tan x(\mathrm{~d} x)}$ $\begin{aligned} & =\mathrm{e}^{-\ln \cos x} \\ & =(\cos x)^{-1} \text { OR } \sec x \\ & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(y(\cos x)^{-1}\right)=\cos ^{2} x \\ & y(\cos x)^{-1}=\int \frac{1}{2}(1+\cos 2 x)(\mathrm{d} x) \\ & y(\cos x)^{-1}=\frac{1}{2} x+\frac{1}{4} \sin 2 x(+c) \\ & y=\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x+c\right) \cos x \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \sqrt{1} \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline 8 \end{aligned}$	For correct IF For integrating to \ln form For correct simplified IF AEF For $\frac{\mathrm{d}}{\mathrm{d} x}(y$.their IF $)=\cos ^{3} x$. their IF For integrating LHS For attempting to use $\cos 2 x$ formula $O R$ parts for $\int \cos ^{2} x \mathrm{~d} x$ For correct integration both sides AEF For correct general solution AEF
$\text { (ii) } \begin{aligned} 2 & =\left(\frac{1}{2} \pi+c\right) \cdot-1 \Rightarrow c=-2-\frac{1}{2} \pi \\ y & =\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x-2-\frac{1}{2} \pi\right) \cos x \end{aligned}$	A1 2 10	For substituting $(\pi, 2)$ into their GS and solve for c For correct solution AEF
9 $\begin{aligned} & \text { (i) } 3^{n} \times 3^{m}=3^{n+m}, n+m \in \mathrm{Z} \\ & \left(3^{p} \times 3^{q}\right) \times 3^{r}=\left(3^{p+q}\right) \times 3^{r}=3^{p+q+r} \\ & =3^{p} \times\left(3^{q+r}\right)=3^{p} \times\left(3^{q} \times 3^{r}\right) \Rightarrow \text { associativity } \end{aligned}$ Identity is 3^{0} Inverse is 3^{-n} $3^{n} \times 3^{m}=3^{n+m}=3^{m+n}=3^{m} \times 3^{n} \Rightarrow \text { commutativity }$	B1 M1 A1 B1 B1 B1 6	For showing closure For considering 3 distinct elements, seen bracketed $2+1$ or $1+2$ For correct justification of associativity For stating identity. Allow 1 For stating inverse For showing commutativity
(ii) (a) $3^{2 n} \times 3^{2 m}=3^{2 n+2 m}\left(=3^{2(n+m)}\right)$ Identity, inverse OK	$\begin{aligned} & \text { B1* } \\ & \text { B1 } \\ & \text { (*dep) } \\ & \hline \end{aligned}$	For showing closure For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n}, $-n \notin$ subset	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For considering inverse For justification of not being a subgroup 3^{-n} must be seen here or in (i)
(c) EITHER: eg $3^{1^{2}} \times 3^{2^{2}}=3^{5}$ $\neq 3^{r^{2}} \Rightarrow \text { not a subgroup }$ OR: $3^{n^{2}} \times 3^{m^{2}}=3^{n^{2}+m^{2}}$ $\neq 3^{r^{2}}$ eg $1^{2}+2^{2}=5 \Rightarrow$ not a subgroup	$\begin{array}{r} \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline 12 \end{array}$	For attempting to find a specific counter-example of closure For a correct counter-example and statement that it is not a subgroup For considering closure in general For explaining why $n^{2}+m^{2} \neq r^{2}$ in general and statement that it is not a subgroup

physicsandmathstutor.com

